Меню
Бесплатно
Главная  /  Лечение ожогов  /  Специальная теория относительности Эйнштейна: кратко и простыми словами. Теория относительности - что это такое? Постулаты теории относительности. Время и пространство в теории относительности

Специальная теория относительности Эйнштейна: кратко и простыми словами. Теория относительности - что это такое? Постулаты теории относительности. Время и пространство в теории относительности

Общая теория относительности наряду со специальной теорией относительности - гениальный труд Альберта Эйнштейна, который в начале 20 века перевернул взгляд физиков на мир. Спустя сто лет ОТО является основной и важнейшей теорией физики в мире, и вместе с квантовой механикой претендует на один из двух краеугольных камней «теории всего». Общая теория относительности описывает гравитацию как следствие искривления пространства-времени (объединенного в ОТО в одно целое) под действием массы. Благодаря ОТО ученые вывели множество констант, проверили кучу необъяснимых явлений и придумали такие вещи, как черные дыры, темная материя и темная энергия, расширение Вселенной, Большой Взрыв и многое другое. Также ОТО наложила вето на превышение скорости света, тем самым буквально заточив нас в наших окрестностях (Солнечной системы), но оставила лазейку в виде червоточин - коротких возможных путей через пространство-время.

Сотрудник РУДН и его бразильские коллеги поставили под сомнение концепцию использования стабильных червоточин в качестве порталов к различным точкам пространства-времени. Результаты их исследований были опубликованы в Physical Review D. - довольно избитое клише в научной фантастике. Червоточина, или «кротовая нора», это своего рода туннель, соединяющий отдаленные точки в пространстве или даже две вселенные, посредством искривления пространства-времени.

СТО, ТОЭ - под этими аббревиатурами скрывается знакомый практически всем термин "теория относительности". Простым языком можно объяснить все, даже высказывание гения, так что не отчаивайтесь, если не помните школьный курс физики, ведь на самом деле все гораздо проще, чем кажется.

Зарождение теории

Итак, начнем курс "Теория относительности для чайников". Альберт Эйнштейн опубликовал свою работу в 1905 году, и она вызвала резонанс среди ученых. Эта теория практически полностью перекрывала многие пробелы и нестыковки в физике прошлого века, но и, ко всему прочему, перевернула представление о пространстве и времени. Во многие утверждения Эйнштейна современникам было сложно поверить, но эксперименты и исследования только подтверждали слова великого ученого.

Теория относительности Эйнштейна простым языком объясняла то, над чем люди бились столетиями. Ее можно назвать основой всей современной физики. Однако прежде чем продолжить разговор о теории относительности, следует разъяснить вопрос о терминах. Наверняка многие, читая научно-популярные статьи, сталкивались с двумя аббревиатурами: СТО и ОТО. На самом деле они подразумевают несколько разные понятия. Первая - это специальная теория относительности, а вторая расшифровывается как "общая теория относительности".

Просто о сложном

СТО - это более старая теория, которая потом стала частью ОТО. В ней могут быть рассмотрены только физические процессы для объектов, движущихся с равномерной скоростью. Общая же теория может описать, что происходит с ускоряющимися объектами, а также объяснить, почему существуют частицы гравитонов и гравитация.

Если нужно описать движение и а также отношения пространства и времени при приближении к скорости света - это сможет сделать специальная теория относительности. Простыми словами можно объяснить так: к примеру, друзья из будущего подарили вам космолет, который может летать на высокой скорости. На носу космического корабля стоит пушка, способная расстрелять фотонами все, что попадется впереди.

Когда производится выстрел, то относительно корабля эти частицы летят со скоростью света, но, по логике, неподвижный наблюдатель должен увидеть сумму двух скоростей (самих фотонов и корабля). Но ничего подобного. Наблюдатель увидит фотоны, движущиеся со скоростью 300000 м/с, будто скорость корабля была нулевой.

Все дело в том, что как бы быстро ни двигался объект, скорость света для него является неизменной величиной.

Это утверждение является основной поразительных логических выводов вроде замедления и искажения времени, зависящих от массы и скорости объекта. На этом основаны сюжеты многих научно-фантастических фильмов и сериалов.

Общая теория относительности

Простым языком можно объяснить и более объемную ОТО. Для начала следует принять во внимание тот факт, что наше пространство четырехмерное. Время и пространство объединяются в таком "предмете", как "пространственно-временной континуум". В нашем пространстве имеются четыре оси координат: х, у, z и t.

Но люди не могут воспринимать непосредственно четыре измерения, так же, как гипотетический плоский человек, живущих в двухмерном мире, не в состоянии посмотреть вверх. По сути, наш мир является только проекцией четырехмерного пространства в трехмерное.

Интересным фактом является то, что, согласно общей теории относительности, тела не меняются при движении. Объекты четырехмерного мира на самом деле всегда неизменны, и при движении изменяются только их проекции, что мы и воспринимаем как искажение времени, сокращение или увеличение размеров и прочее.

Эксперимент с лифтом

О теории относительности простым языком можно рассказать с помощью небольшого мысленного эксперимента. Представьте, что вы в лифте. Кабинка пришла в движение, и вы оказались в состоянии невесомости. Что произошло? Причины может быть две: либо лифт находится в космосе, либо пребывает в свободном падении под действием гравитации планеты. Самое интересное состоит в том, что выяснить причину невесомости нельзя, если нет возможности выглянуть из кабинки лифта, то есть оба процесса выглядят одинаково.

Возможно, проведя похожий мысленный эксперимент, Альберт Эйнштейн пришел к выводу, что если эти две ситуации неотличимы друг от друга, значит, на самом деле тело под воздействием гравитации не ускоряется, это равномерное движение, которое искривляется под воздействием массивного тела (в данном случае планеты). Таким образом, ускоренное движение - это лишь проекция равномерного движения в трехмерное пространство.

Наглядный пример

Еще один хороший пример на тему "Теория относительности для чайников". Он не совсем корректен, зато очень прост и нагляден. Если на натянутую ткань положить какой-либо объект, он образует под собой "прогиб", "воронку". Все меньшие тела вынуждены будут искажать свою траекторию согласно новому изгибу пространства, а если у тела немного энергии, оно вообще может не преодолеть этой воронки. Однако с точки зрения самого движущегося объекта, траектория остается прямой, они не почувствуют изгиба пространства.

Гравитация "понижена в звании"

С появлением общей теории относительности гравитация перестала быть силой и теперь довольствуется положением простого следствия искривления времени и пространства. ОТО может показаться фантастичной, однако является рабочей версией и подтверждается экспериментами.

Множество, казалось бы, невероятных в нашем мире вещей может объяснить теория относительности. Простым языком такие вещи называют следствиями ОТО. Например, лучи света, пролетающие на близком расстоянии от массивных тел, искривляются. Более того, многие объекты из далекого космоса скрыты друг за другом, но из-за того, что лучи света огибают другие тела, нашему взору (точнее, взору телескопа) доступны, казалось бы, невидимые объекты. Это ведь все равно, что смотреть сквозь стены.

Чем больше гравитация, тем медленнее на поверхности объекта течет время. Это касается не только массивных тел вроде нейтронных звезд или черных дыр. Эффект замедления времени можно наблюдать даже на Земле. К примеру, приборы для спутниковой навигации снабжены точнейшими атомными часами. Они находятся на орбите нашей планеты, и время там тикает чуть быстрее. Сотые доли секунды через сутки сложатся в цифру, которая даст до 10 км погрешности в расчетах маршрута на Земле. Рассчитать эту погрешность позволяет именно теория относительности.

Простым языком можно выразиться так: ОТО лежит в основе многих современных технологий, и благодаря Эйнштейну мы легко можем найти в незнакомом районе пиццерию и библиотеку.

Общая теория относительности (ОТО) — геометрическая теория тяготения, опубликованная Альбертом Эйнштейном в 1915—1916 годах. В рамках этой теории, являющейся дальнейшим развитием специальной теории относительности, постулируется, что гравитационные эффекты обусловлены не силовым взаимодействием тел и полей, находящихся в пространстве-времени, а деформацией самого пространства-времени, которая связана, в частности, с присутствием массы-энергии. Таким образом, в ОТО, как и в других метрических теориях, гравитация не является силовым взаимодействием. Общая теория относительности отличается от других метрических теорий тяготения использованием уравнений Эйнштейна для связи кривизны пространства-времени с присутствующей в пространстве материей.

ОТО в настоящее время — самая успешная гравитационная теория, хорошо подтверждённая наблюдениями. Первый успех общей теории относительности состоял в объяснении аномальной прецессии перигелия Меркурия. Затем, в 1919, Артур Эддингтон сообщил о наблюдении отклонения света вблизи Солнца в момент полного затмения, что подтвердило предсказания общей теории относительности.

С тех пор многие другие наблюдения и эксперименты подтвердили значительное количество предсказаний теории, включая гравитационное замедление времени, гравитационное красное смещение, задержку сигнала в гравитационом поле и, пока лишь косвенно, гравитационное излучение. Кроме того, многочисленные наблюдения интерпретируются как подтверждения одного из самых таинственных и экзотических предсказаний общей теории относительности — существования чёрных дыр.

Несмотря на ошеломляющий успех общей теории относительности, в научном сообществе существует дискомфорт, связанный с тем, что её не удаётся переформулировать как классический предел квантовой теории из-за появления неустранимых математических расходимостей при рассмотрении чёрных дыр и вообще сингулярностей пространства-времени. Для решения этой проблемы был предложен ряд альтернативных теорий. Современные экспериментальные данные указывают, что любого типа отклонения от ОТО должны быть очень малыми, если они вообще существуют.

Основные принципы общей теории относительности

Теория гравитации Ньютона основана на понятии силы тяготения, которая является дальнодействующей силой: она действует мгновенно на любом расстоянии. Этот мгновенный характер действия несовместим с полевой парадигмой современной физики и, в частности, со специальной теорией относительности, созданной в 1905 году Эйнштейном, вдохновлённым работами Пуанкаре и Лоренца. В теории Эйнштейна никакая информация не может распространиться быстрее скорости света в вакууме.

Математически сила гравитации Ньютона выводится из потенциальной энергии тела в гравитационном поле. Потенциал гравитации, соответствующий этой потенциальной энергии, подчиняется уравнению Пуассона, которое не инвариантно при преобразованиях Лоренца. Причина неинвариантности заключается в том, что энергия в специальной теории относительности не является скалярной величиной, а переходит во временную компоненту 4-вектора. Векторная же теория гравитации оказывается аналогичной теории электромагнитного поля Максвелла и приводит к отрицательной энергии гравитационных волн, что связано с характером взаимодействия: одноимённые заряды (массы) в гравитации притягиваются, а не отталкиваются, как в электромагнетизме. Таким образом, теория гравитации Ньютона несовместима с фундаментальным принципом специальной теории относительности — инвариантностью законов природы в любой инерциальной системе отсчёта, а прямое векторное обобщение теории Ньютона, впервые предложенное Пуанкаре в 1905 году в его работе «О динамике электрона», приводит к физически неудовлетворительным результатам.

Эйнштейн начал поиск теории гравитации, которая была бы совместима с принципом инвариантности законов природы относительно любой системы отсчёта. Результатом этого поиска явилась общая теория относительности, основанная на принципе тождественности гравитационной и инертной массы.

Принцип равенства гравитационной и инертной масс

В классической механике Ньютона существует два понятия массы: первое относится ко второму закону Ньютона, а второе — к закону всемирного тяготения. Первая масса — инертная (или инерционная) — есть отношение негравитационной силы, действующей на тело, к его ускорению. Вторая масса — гравитационная (или, как её иногда называют, тяжёлая) — определяет силу притяжения тела другими телами и его собственную силу притяжения. Вообще говоря, эти две массы измеряются, как видно из описания, в различных экспериментах, поэтому совершенно не обязаны быть пропорциональными друг другу. Их строгая пропорциональность позволяет говорить о единой массе тела как в негравитационных, так и в гравитационных взаимодействиях. Подходящим выбором единиц можно сделать эти массы равными друг другу. Сам принцип был выдвинут ещё Исааком Ньютоном, а равенство масс было проверено им экспериментально с относительной точностью 10?3. В конце XIX века более тонкие эксперименты провёл Этвёш, доведя точность проверки принципа до 10?9. В течение XX века экспериментальная техника позволила подтвердить равенство масс с относительной точностью 10?12—10?13 (Брагинский, Дикке и т. д.). Иногда принцип равенства гравитационной и инертной масс называют слабым принципом эквивалентности. Альберт Эйнштейн положил его в основу общей теории относительности.

Принцип движения по геодезическим линиям

Если гравитационная масса точно равна инерционной, то в выражении для ускорения тела, на которое действуют лишь гравитационные силы, обе массы сокращаются. Поэтому ускорение тела, а следовательно, и его траектория не зависит от массы и внутреннего строения тела. Если же все тела в одной и той же точке пространства получают одинаковое ускорение, то это ускорение можно связать не со свойствами тел, а со свойствами самого пространства в этой точке.

Таким образом, описание гравитационного взаимодействия между телами можно свести к описанию пространства-времени, в котором двигаются тела. Естественно предположить, как это и сделал Эйнштейн, что тела двигаются по инерции, то есть так, что их ускорение в собственной системе отсчёта равно нулю. Траектории тел тогда будут геодезическими линиями, теория которых была разработана математиками ещё в XIX веке.

Сами геодезические линии можно найти, если задать в пространстве-времени аналог расстояния между двумя событиями, называемый по традиции интервалом или мировой функцией. Интервал в трёхмерном пространстве и одномерном времени (иными словами, в четырёхмерном пространстве-времени) задаётся 10 независимыми компонентами метрического тензора. Эти 10 чисел образуют метрику пространства. Она определяет «расстояние» между двумя бесконечно близкими точками пространства-времени в различных направлениях. Геодезические линии, соответствующие мировым линиям физических тел, скорость которых меньше скорости света, оказываются линиями наибольшего собственного времени, то есть времени, измеряемого часами, жёстко скреплёнными с телом, следующим по этой траектории. Современные эксперименты подтверждают движение тел по геодезическим линиям с той же точностью, как и равенство гравитационной и инертной масс.

Кривизна пространства-времени

Если запустить из двух близких точек два тела параллельно друг другу, то в гравитационном поле они постепенно начнут либо сближаться, либо удаляться друг от друга. Этот эффект называется девиацией геодезических линий. Аналогичный эффект можно наблюдать непосредственно, если запустить два шарика параллельно друг другу по резиновой мембране, на которую в центр положен массивный предмет. Шарики разойдутся: тот, который был ближе к предмету, продавливающему мембрану, будет стремиться к центру сильнее, чем более удалённый шарик. Это расхождение (девиация) обусловлено кривизной мембраны. Аналогично, в пространстве-времени девиация геодезических (расхождение траекторий тел) связана с его кривизной. Кривизна пространства-времени однозначно определяется его метрикой — метрическим тензором. Различие между общей теорией относительности и альтернативными теориями гравитации определяется в большинстве случаев именно в способе связи между материей (телами и полями негравитационной природы, создающими гравитационное поле) и метрическими свойствами пространства-времени.

Пространство-время ОТО и сильный принцип эквивалентности

Часто неправильно считают, что в основе общей теории относительности лежит принцип эквивалентности гравитационного и инерционного поля, который может быть сформулирован так:
Достаточно малая по размерам локальная физическая система, находящаяся в гравитационном поле, по поведению неотличима от такой же системы, находящейся в ускоренной (относительно инерциальной системы отсчёта) системе отсчёта, погружённой в плоское пространство-время специальной теории относительности.

Иногда тот же принцип постулируют как «локальную справедливость специальной теории относительности» или называют «сильным принципом эквивалентности».

Исторически этот принцип действительно сыграл большую роль в становлении общей теории относительности и использовался Эйнштейном при её разработке. Однако в самой окончательной форме теории он, на самом деле, не содержится, так как пространство-время как в ускоренной, так и в исходной системе отсчёта в специальной теории относительности является неискривленным — плоским, а в общей теории относительности оно искривляется любым телом и именно его искривление вызывает гравитационное притяжение тел.

Важно отметить, что основным отличием пространства-времени общей теории относительности от пространства-времени специальной теории относительности является его кривизна, которая выражается тензорной величиной — тензором кривизны. В пространстве-времени специальной теории относительности этот тензор тождественно равен нулю и пространство-время является плоским.

По этой причине не совсем корректным является название «общая теория относительности». Данная теория является лишь одной из ряда теорий гравитации, рассматриваемых физиками в настоящее время, в то время как специальная теория относительности (точнее, её принцип метричности пространства-времени) является общепринятой научным сообществом и составляет краеугольный камень базиса современной физики. Следует, тем не менее, отметить, что ни одна из прочих развитых теорий гравитации, кроме ОТО, не выдержала проверки временем и экспериментом.

Основные следствия ОТО

Согласно принципу соответствия, в слабых гравитационных полях предсказания общей теории относительности совпадают с результатами применения ньютоновского закона всемирного тяготения с небольшими поправками, которые растут по мере увеличения напряжённости поля.

Первыми предсказанными и проверенными экспериментальными следствиями общей теории относительности стали три классических эффекта, перечисленных ниже в хронологическом порядке их первой проверки:
1. Дополнительный сдвиг перигелия орбиты Меркурия по сравнению с предсказаниями механики Ньютона.
2. Отклонение светового луча в гравитационном поле Солнца.
3. Гравитационное красное смещение, или замедление времени в гравитационном поле.

Существует ряд других эффектов, поддающихся экспериментальной проверке. Среди них можно упомянуть отклонение и запаздывание (эффект Шапиро) электромагнитных волн в гравитационном поле Солнца и Юпитера, эффект Лензе-Тирринга (прецессия гироскопа вблизи вращающегося тела), астрофизические доказательства существования чёрных дыр, доказательства излучения гравитационных волн тесными системами двойных звёзд и расширение Вселенной.

До сих пор надёжных экспериментальных свидетельств, опровергающих ОТО, не обнаружено. Отклонения измеренных величин эффектов от предсказываемых ОТО не превышают 0,1 % (для указанных выше трёх классических явлений). Несмотря на это, в связи с различными причинами теоретиками было разработано не менее 30 альтернативных теорий гравитации, причём некоторые из них позволяют получить сколь угодно близкие к ОТО результаты при соответствующих значениях входящих в теорию параметров.

Про эту теорию говорили, что её понимают только три человека в мире, а когда математики попытались цифрами выразить то, что из неё следует, сам автор - Альберт Эйнштейн - шутил, что теперь и он перестал её понимать.

Специальная и общая теория относительности - неразрывные части учения, на котором строятся современные научные взгляды на устройство мира.

«Год чудес»

В 1905 году ведущий научный печатный орган Германии «Annalen der Physik» («Анналы физики») опубликовал одну за другой четыре статьи 26-летнего Альберта Эйнштейна, работавшего экспертом 3-го класса - мелким клерком - Федерального бюро патентования изобретений в Берне. Он и раньше сотрудничал с журналом, но публикация такого количества работ за один год была экстраординарным событием. Оно стало еще более выдающимся, когда стала ясна ценность идей, которые содержались в каждой из них.

В первой из статей высказывались мысли о квантовой природе света, рассмотрены процессы поглощения и выделения электромагнитного излучения. На этой основе был впервые объяснен фотоэффект - испускание веществом электронов, выбиваемых фотонами света, предложены формулы для расчета количества выделяемой при этом энергии. Именно за теоретические разработки фотоэлектрического эффекта, ставшие началом квантовой механики, а не за постулаты теории относительности Эйнштейну будет присуждена в 1922 году Нобелевская премия по физике.

В другой статье было положено начало прикладным направлениям физической статистики на основе исследования броуновского движения мельчайших, взвешенных в жидкости частиц. Эйнштейн предложил методы поиска закономерности флуктуаций - беспорядочных и случайных отклонений физических величин от их наиболее вероятных значений.

И наконец, в статьях «К электродинамике движущихся тел» и «Зависит ли инерция тела от содержания в нем энергии?» содержались зародыши того, что будет обозначено в истории физики как теория относительности Альберта Эйнштейна, вернее её первая часть - СТО, - специальная теория относительности.

Источники и предшественники

В конце XIX века многим физикам казалось, что большинство глобальных проблем мироздания решено, главные открытия сделаны, и человечеству предстоит лишь использовать накопленные знания для мощного ускорения технического прогресса. Лишь некоторые теоретические неувязки портили гармоническую картину Вселенной, заполненной эфиром и живущей по незыблемым ньютоновским законам.

Гармонию портили теоретические изыскания Максвелла. Его уравнения, которые описывали взаимодействия электромагнитных полей, противоречили общепринятым законам классической механики. Это касалось измерения скорости света в динамических системах отсчета, когда переставал работать принцип относительности Галилея, - математическая модель взаимодействия таких систем при движении со световой скоростью приводила к исчезновению электромагнитных волн.

Кроме того, не поддавался обнаружению эфир, который должен был примирить одновременное существование частиц и волн, макро и микрокосмоса. Эксперимент, который провели в 1887 году Альберт Майкельсон и Эдвард Морли имел целью обнаружение “эфирного ветра”, который неизбежно должен был быть зафиксирован уникальным прибором - интерферометром. Опыт длился целый год - время полного обращения Земли вокруг Солнца. Планета должна была полгода двигаться против эфирного потока, полгода эфир должен был «дуть в паруса» Земли, но результат был нулевым: смещения световых волн под воздействием эфира не обнаружили, что ставило под сомнение сам факт существования эфира.

Лоренц и Пуанкаре

Физики попытались найти объяснение результатам экспериментов по обнаружению эфира. Свою математическую модель предложил Хендрик Лоренц (1853-1928). Она возвращала к жизни эфирное заполнение пространства, но лишь при очень условном и искусственном предположении, что при движении сквозь эфир объекты могут сокращаться в направлении движения. Эту модель доработал великий Анри Пуанкаре (1854-1912).

В работах этих двух ученых впервые появились понятия, во многом составившие главные постулаты теории относительности, и это не дает утихнуть обвинениям Эйнштейна в плагиате. К ним относятся условность понятия об одновременности, гипотеза о постоянности скорости света. Пуанкаре допускал, что при больших скоростях законы механики Ньютона требуют переработки, делал вывод об относительности движения, но в приложении к эфирной теории.

Специальная теория относительности - СТО

Проблемы корректного описания электромагнитных процессов стали побудительной причиной для выбора темы для теоретических разработок, и опубликованные в 1905 году статьи Эйнштейна содержали интерпретацию частного случая - равномерного и прямолинейного движения. К 1915году была сформирована общая теория относительности, которая объясняла и взаимодействия гравитационные взаимодействия, но первой стала теория, получившая название специальной.

Специальная теория относительности Эйнштейна кратко может быть изложена в виде двух основных постулатов. Первый распространяет действие принципа относительности Галилея на все физические явления, а не только на механические процессы. В более общей форме он гласит: Все физические законы одинаковы для всех инерциальных (движущихся равномерно прямолинейно или находящихся в покое) систем отсчета.

Второе утверждение, которое содержит специальная теория относительности: скорость распространения света в вакууме для всех инерциальных систем отсчета одинакова. Далее делается более глобальный вывод: световая скорость - максимально большая величина скорости передачи взаимодействий в природе.

В математических выкладках СТО приводится формула E=mc², которая и раньше появлялась в физических публикациях, но именно благодаря Эйнштейну она стала самой знаменитой и популярной в истории науки. Вывод об эквивалентности массы и энергии - это самая революционная формула теории относительности. Понятие того что любой объект, обладающий массой, содержит огромное количество энергии стало основой для разработок по использованию ядерной энергии и, прежде всего, привело к появлению атомной бомбы.

Эффекты специальной теории относительности

Из СТО вытекает несколько следствий, получивших название релятивистских (relativity англ. -относительность) эффектов. Замедление времени - один из самых ярких. Суть его в том, что в движущейся системе отсчета время идет медленнее. Расчеты показывают, что на космическом корабле, совершившем гипотетический полет до звездной системы Альфа-Центавра и обратно при скорости 0,95 c (c -скорость света) пройдет 7,3 года, а на Земле - 12 лет. Такие примеры часто приводят, когда объясняется теория относительности для чайников, как и связанный с этим эффектом парадокс близнецов.

Еще один эффект - сокращение линейных размеров, - то есть с точки зрения наблюдателя, движущиеся относительно него со скоростью, близкой к c, предметы, будут иметь меньшие линейные размеры в направлении движения, чем их собственная длина. Этот предсказываемый релятивистской физикой эффект называется лоренцевым сокращением.

По законам релятивистской кинематики масса движущегося объекта больше массы покоя. Этот эффект становится особенно значим при разработке приборов для исследования элементарных частиц - без учета его трудно представить себе работу БАКа (Большого андронного коллайдера).

Пространство-время

Одним из важнейших компонентов СТО является графическое отображение релятивистской кинематики, особое понятие единого пространства-времени, которое предложил немецкий математик Герман Минковский, бывший одно время преподавателем математики у студента Альберта Эйнштейна.

Суть модели Минковского заключается в совершенно новом подходе к определению положения вступающих во взаимодействие объектов. Специальная теория относительности времени уделяет особое внимание. Время становится не просто четвертой координатой классической трехмерной системы координат, время - не абсолютная величина, а неотделимая характеристика пространства, которое принимает вид пространственно-временного континуума, графически выраженного в виде конуса, в котором и происходят все взаимодействия.

Такое пространство в теории относительности, с её развитием до более обобщающего характера, в дальнейшем было подвергнуто ещё и искривлению, что сделало такую модель подходящей для описания и гравитационных взаимодействий.

Дальнейшее развитие теории

СТО не сразу нашла понимание у физиков, но постепенно она стала основным инструментом описания мира, особенно мира элементарных частиц, который становился главным предметом изучения физической науки. Но задача дополнения СТО объяснением сил тяготения была очень актуальной, и Эйнштейн не прекращал работу, оттачивая принципы общей теории относительности - ОТО. Математическая обработка этих принципов заняла довольно много времени - около 11 лет, и в ней приняли участие специалисты смежных с физикой областей точных наук.

Так, огромный вклад внес ведущий математик того времени Давид Гильберт (1862-1943), ставший одним из соавторов уравнений гравитационного поля. Они явились последним камнем в построении прекрасного здания, получившего наименование - общая теория относительности, или ОТО.

Общая теория относительности - ОТО

Современная теория гравитационного поля, теория структуры «пространство-время», геометрия «пространства-времени», закон физических взаимодействий в неинерциальных системах отчета - всё это различные наименования, которыми наделена общая теория относительности Альберта Эйнштейна.

Теория всемирного тяготения, которая в течении долгого времени определяла взгляды физической науки на гравитацию, на взаимодействия объектов и полей различного размера. Парадоксально, но основным её недостатком была нематериальность, иллюзорность, математичность её сути. Между звездами и планетами находилась пустота, притяжение между небесными телами объяснялось дальнодействием неких сил, причем мгновенным. Общая теория относительности Альберта Эйнштейна наполнила гравитацию физическим содержанием, представила её как непосредственный контакт различных материальных объектов.

Геометрия гравитации

Главная идея, с помощью которой Эйнштейн объяснил гравитационные взаимодействия очень проста. Физическим выражением сил тяготения он объявляет пространство-время, наделенное вполне ощутимыми признаками - метрикой и деформациями, на которые влияет масса объекта, вокруг которого образуются такие искривления. Одно время Эйнштейну даже приписывали призывы вернуть в теорию мироздания понятие эфира, как упругой материальной среды, заполняющей пространство. Он же разъяснял, что ему трудно называть вауумом субстанцию, обладающую множеством качеств, поддающихся описанию.

Таким образом, гравитация - проявление геометрических свойств четырехмерного пространства-времени, которое было обозначено в СТО как неискривлённое, но в более общих случаях ото наделяется кривизной, определяющей движение материальных объектов, которым придается одинаковое ускорение в соответствии с декларируемым Эйнштейном принципом эквивалентности.

Этот основополагающий принцип теории относительности объясняет многие «узкие места» ньютоновской теории всемирного тяготения: искривление света, наблюдаемое при прохождении его около массивных космических объектов при некоторых астрономических явлениях и, отмеченное еще древними одинаковое ускорение падения тел, независимо от их массы.

Моделирование кривизны пространства

Обычным примером, с помощью которого объясняется общая теория относительности для чайников, является представление пространства-времени в виде батута - упругой тонкой мембраны, на которую выкладывают предметы (чаще всего шары), имитирующие взаимодействующие объекты. Тяжелые шары прогибают мембрану, образуя вокруг себя воронку. Более мелкий шар, запущенный по поверхности, двигается в полном соответствии с законами гравитации, постепенно скатываясь в углубления, образованные более массивными объектами.

Но такой пример достаточно условен. Реальное пространство-время многомерно, кривизна его тоже не выглядит так элементарно, но принцип формирования гравитационного взаимодействия и суть теории относительности становятся понятны. В любом случае, гипотезы, которая более логично и связно объяснила бы теорию гравитации, пока не существует.

Доказательства истинности

ОТО быстро стала восприниматься как мощное основание, на котором может строиться современная физика. Теория относительности с самого начала поражала своей стройностью и гармонией, и не только специалистов, и вскоре после своего появления стала подтверждаться наблюдениями.

Самая близкая к Солнцу точка - перигелий - орбиты Меркурия постепенно смещается относительно орбит других планет Солнечной системы, что было обнаружено еще в середине XIX века. Такое перемещение - прецессия - не находило разумного объяснения в рамках Ньютоновской теории всемирного тяготения, но было с точностью рассчитано на основе общей теории относительности.

Затмение Солнца, которое произошло в 1919 году предоставило возможность для очередного доказательства ОТО. Артур Эддингтон, который в шутку называл себя вторым человеком из трех, что понимают основы теории относительности, подтвердил предсказанные Эйнштейном отклонения при прохождении фотонов света вблизи светила: в момент затмения стало заметно смещение видимого положения некоторых звезд.

Эксперимент по обнаружению замедления хода часов или гравитационного красного смещения был предложен самим Эйнштейном в числе других доказательств ОТО. Лишь спустя долгие годы удалось подготовить необходимое экспериментальное оборудование и провести этот опыт. Гравитационное смещение частот излучения от излучателя и приёмника, разнесенных по высоте оказалось в пределах, предсказанных ОТО, а физики из Гарварда Роберт Паунд и Глен Ребка, которые провели этот эксперимент, в дальнейшем только повысили точность измерений, и формула теории относительности снова оказалась верной.

В обосновании самых значимых проектов исследования космического пространства обязательно присутствует теория относительности Эйнштейна. Кратко можно сказать, что она стала инженерным инструментом специалистов, в частности тех, кто занимается спутниковыми системами навигации - GPS, ГЛОНАСС и т.д. Рассчитать координаты объекта с нужной точностью, даже в относительно небольшом пространстве, без учета замедлений сигналов, предсказанных ОТО, невозможно. Тем более если речь идет об объектах, разнесенных на космические расстояния, где ошибка в навигации может быть огромной.

Творец теории относительности

Альберт Эйнштейн был еще молодым человеком, когда опубликовал основы теории относительности. Впоследствии ему самому становились ясны её недостатки и нестыковки. В частности, самой главной проблемой ОТО стала невозможность её врастания в квантовую механику, поскольку при описании гравитационных взаимодействий используются принципы, радикально отличающиеся друг от друга. В квантовой механике рассматривается взаимодействие объектов в едином пространстве-времени, а у Эйнштейна само это пространство формирует гравитацию.

Написание "формулы всего сущего" - единой теории поля, которая устранила бы противоречия ОТО и квантовой физики, было целью Эйнштейна на протяжении долгих лет, он работал над этой теорией до последнего часа, но успеха не достиг. Проблемы ОТО стали стимулом для многих теоретиков в поиске более совершенных моделей мира. Так появлялись теории струн, петлевая квантовая гравитация и множество других.

Личность автора ОТО оставила след в истории сравнимый со значением для науки самой теории относительности. Она не оставляет равнодушным до сих пор. Эйнштейн сам удивлялся, почему столько внимания уделялось ему и его работам со стороны людей, не имевших к физике никакого отношения. Благодаря своим личным качествам, знаменитому остроумию, активной политической позиции и даже выразительной внешности Эйнштейн стал самым знаменитым физиком на Земле, героем множества книг, фильмов и компьютерных игр.

Конец его жизни многими описывается драматически: он был одинок, считал себя ответственным за появление самого страшного оружия, ставшего угрозой всему живому на планете, его теория единого поля осталась нереальной мечтой, но лучшим итогом можно считать слова Эйнштейна, сказанные незадолго до смерти о том, что свою задачу на Земле он выполнил. С этим трудно спорить.

материал из книги Стивена Хокинга и Леонарда Млодинова "Кратчайшая история времени"

Относительность

Фундаментальный постулат Эйнштейна, именуемый принципом относительности, гласит, что все законы физики должны быть одинаковыми для всех свободно движущихся наблюдателей независимо от их скорости. Если скорость света постоянная величина, то любой свободно движущийся наблюдатель должен фиксировать одно и то же значение независимо от скорости, с которой он приближается к источнику света или удаляется от него.

Требование, чтобы все наблюдатели сошлись в оценке скорости света, вынуждает изменить концепцию времени. Согласно теории относительности наблюдатель, едущий на поезде, и тот, что стоит на платформе, разойдутся в оценке расстояния, пройденного светом. А поскольку скорость есть расстояние, деленное на время, единственный способ для наблюдателей прийти к согласию относительно скорости света – это разойтись также и в оценке времени. Другими словами, теория относительности положила конец идее абсолютного времени! Оказалось, что каждый наблюдатель должен иметь свою собственную меру времени и что идентичные часы у разных наблюдателей не обязательно будут показывать одно и то же время.

Говоря, что пространство имеет три измерения, мы подразумеваем, что положение точки в нем можно передать с помощью трех чисел – координат. Если мы введем в наше описание время, то получим четырехмерное пространство-время.

Другое известное следствие теории относительности – эквивалентность массы и энергии, выраженная знаменитым уравнением Эйнштейна Е = mс 2 (где Е– энергия, m – масса тела, с – скорость света). Ввиду эквивалентности энергии и массы кинетическая энергия, которой материальный объект обладает в силу своего движения, увеличивает его массу. Иными словами, объект становится труднее разгонять.

Этот эффект существенен только для тел, которые перемещаются со скоростью, близкой к скорости света. Например, при скорости, равной 10% от скорости света, масса тела будет всего на 0,5% больше, чем в состоянии покоя, а вот при скорости, составляющей 90% от скорости света, масса уже более чем вдвое превысит нормальную. По мере приближения к скорости света масса тела увеличивается все быстрее, так что для его ускорения требуется все больше энергии. Согласно теории относительности объект никогда не сможет достичь скорости света, поскольку в данном случае его масса стала бы бесконечной, а в силу эквивалентности массы и энергии для этого потребовалась бы бесконечная энергия. Вот почему теория относительности навсегда обрекает любое обычное тело двигаться со скоростью, меньшей скорости света. Только свет или другие волны, не имеющие собственной массы, способны двигаться со скоростью света.

Искривленное пространство

Общая теория относительности Эйнштейна основана на революционном предположении, что гравитация не обычная сила, а следствие того, что пространство-время не является плоским, как принято было думать раньше. В общей теории относительности пространство-время изогнуто или искривлено помещенными в него массой и энергией. Тела, подобные Земле, движутся по искривленным орбитам не под действием силы, именуемой гравитацией.

Так как геодезическая линия – кратчайшая линия между двумя аэропортами, штурманы ведут самолеты именно по таким маршрутам. Например, вы могли бы, следуя показаниям компаса, пролететь 5966 километров от Нью-Йорка до Мадрида почти строго на восток вдоль географической параллели. Но вам придется покрыть всего 5802 километра, если вы полетите по большому кругу, сперва на северо-восток, а затем постепенно поворачивая к востоку и далее к юго-востоку. Вид этих двух маршрутов на карте, где земная поверхность искажена (представлена плоской), обманчив. Двигаясь «прямо» на восток от одной точки к другой по поверхности земного шара, вы в действительности перемещаетесь не по прямой линии, точнее сказать, не по самой короткой, геодезической линии.

Если траекторию космического корабля, который движется в космосе по прямой линии, спроецировать на двумерную поверхность Земли, окажется, что она искривлена.

Согласно общей теории относительности гравитационные поля должны искривлять свет. Например, теория предсказывает, что вблизи Солнца лучи света должны слегка изгибаться в его сторону под воздействием массы светила. Значит, свет далекой звезды, случись ему пройти рядом с Солнцем, отклонится на небольшой угол, из-за чего наблюдатель на Земле увидит звезду не совсем там, где она в действительности располагается.

Напомним, что согласно основному постулату специальной теории относительности все физические законы одинаковы для всех свободно двигающихся наблюдателей, независимо от их скорости. Грубо говоря, принцип эквивалентности распространяет это правило и на тех наблюдателей, которые движутся не свободно, а под действием гравитационного поля.

В достаточно малых областях пространства невозможно судить о том, пребываете ли вы в состоянии покоя в гравитационном поле или движетесь с постоянным ускорением в пустом пространстве.

Представьте себе, что вы находитесь в лифте посреди пустого пространства. Нет никакой гравитации, никакого «верха» и «низа». Вы плывете свободно. Затем лифт начинает двигаться с постоянным ускорением. Вы внезапно ощущаете вес. То есть вас прижимает к одной из стенок лифта, которая теперь воспринимается как пол. Если вы возьмете яблоко и отпустите его, оно упадет на пол. Фактически теперь, когда вы движетесь с ускорением, внутри лифта все будет происходить в точности так же, как если бы подъемник вообще не двигался, а покоился бы в однородном гравитационном поле. Эйнштейн понял, что, подобно тому как, находясь в вагоне по-езда, вы не можете сказать, стоит он или равномерно движется, так и, пребывая внутри лифта, вы не в состоянии определить, перемещается ли он с постоянным ускорением или находится в однородном гравитационном поле. Результатом этого понимания стал принцип эквивалентности.

Принцип эквивалентности и приведенный пример его проявления будут справедливы лишь в том случае, если инертная масса (входящая во второй закон Ньютона, который определяет, ка-кое ускорение придает телу приложенная к нему сила) и гравитационная масса (входящая в за-кон тяготения Ньютона, который определяет величину гравитационного притяжения) суть одно и то же.

Использование Эйнштейном эквивалентности инертной и гравитационной масс для вывода принципа эквивалентности и, в конечном счете, всей общей теории относительности – это бес-прецедентный в истории человеческой мысли пример упорного и последовательного развития логических заключений.

Замедление времени

Еще одно предсказание общей теории относительности состоит в том, что около массивных тел, таких как Земля, должен замедляться ход времени.

Теперь, познакомившись с принципом эквивалентности, мы можем проследить ход рассуждений Эйнштейна, выполнив другой мысленный эксперимент, который показывает, почему гравитация воздействует на время. Представьте себе ракету, летящую в космосе. Для удобства будем считать, что ее корпус настолько велик, что свету требуется целая секунда, чтобы пройти вдоль него сверху донизу. И наконец, предположим, что в ракете находятся два наблюдателя: один – наверху, у потолка, другой – внизу, на полу, и оба они снабжены одинаковыми часами, ведущими отсчет секунд.

Допустим, что верхний наблюдатель, дождавшись отсчета своих часов, немедленно посылает нижнему световой сигнал. При следующем отсчете он шлет второй сигнал. По нашим условиям понадобится одна секунда, чтобы каждый сигнал достиг нижнего наблюдателя. Поскольку верхний наблюдатель посылает два световых сигнала с интервалом в одну секунду, то и нижний наблюдатель зарегистрирует их с таким же интервалом.

Что изменится, если в этом эксперименте, вместо того чтобы свободно плыть в космосе, ракета будет стоять на Земле, испытывая действие гравитации? Согласно теории Ньютона гравитация никак не повлияет на положение дел: если наблюдатель наверху передаст сигналы с промежутком в секунду, то наблюдатель внизу получит их через тот же интервал. Но принцип эквивалентности предсказывает иное развитие событий. Какое именно, мы сможем понять, если в соответствии с принципом эквивалентности мысленно заменим действие гравитации постоянным ускорением. Это один из примеров того, как Эйнштейн использовал принцип эквивалентности при создании своей новой теории гравитации.

Итак, предположим, что наша ракета ускоряется. (Будем считать, что она ускоряется медленно, так что ее скорость не приближается к скорости света.) Поскольку корпус ракеты движется вверх, первому сигналу понадобится пройти меньшее расстояние, чем прежде (до начала ускорения), и он прибудет к нижнему наблюдателю раньше чем через секунду. Если бы ракета двигалась с постоянной скоростью, то и второй сигнал прибыл бы ровно настолько же раньше, так что интервал между двумя сигналами остался бы равным одной секунде. Но в момент от-правки второго сигнала благодаря ускорению ракета движется быстрее, чем в момент отправки первого, так что второй сигнал пройдет меньшее расстояние, чем первый, и затратит еще меньше времени. Наблюдатель внизу, сверившись со своими часами, зафиксирует, что интервал между сигналами меньше одной секунды, и не согласится с верхним наблюдателем, который утверждает, что посылал сигналы точно через секунду.

В случае с ускоряющейся ракетой этот эффект, вероятно, не должен особенно удивлять. В конце концов, мы только что его объяснили! Но вспомните: принцип эквивалентности говорит, что то же самое имеет место, когда ракета покоится в гравитационном поле. Следовательно, да-же если ракета не ускоряется, а, например, стоит на стартовом столе на поверхности Земли, сигналы, посланные верхним наблюдателем с интервалом в секунду (согласно его часам), будут приходить к нижнему наблюдателю с меньшим интервалом (по его часам). Вот это действительно удивительно!

Гравитация изменяет течение времени. Подобно тому как специальная теория относительности говорит нам, что время идет по-разному для наблюдателей, движущихся друг относительно друга, общая теория относительности объявляет, что ход времени различен для наблюдателей, находящихся в разных гравитационных полях. Согласно общей теории относительности нижний наблюдатель регистрирует более короткий интервал между сигналами, потому что у поверхности Земли время течет медленнее, поскольку здесь сильнее гравитация. Чем сильнее гравитационное поле, тем больше этот эффект.

Наши биологические часы также реагируют на изменения хода времени. Если один из близнецов живет на вершине горы, а другой – у моря, первый будет стареть быстрее второго. В данном случае различие в возрастах будет ничтожным, но оно существенно увеличится, коль скоро один из близнецов отправится в долгое путешествие на космическом корабле, который разгоняется до скорости, близкой к световой. Когда странник возвратится, он будет намного моложе брата, оставшегося на Земле. Этот случай известен как парадокс близнецов, но парадоксом он является только для тех, кто держится за идею абсолютного времени. В теории относительности нет никакого уникального абсолютного времени – для каждого индивидуума имеется своя собственная мера времени, которая зависит от того, где он находится и как движется.

C появлением сверхточных навигационных систем, получающих сигналы от спутников, разность хода часов на различных высотах приобрела практическое значение. Если бы аппаратура игнорировала предсказания общей теории относительности, ошибка в определении местоположения могла бы достигать нескольких километров!

Появление общей теории относительности в корне изменило ситуацию. Пространство и время обрели статус динамических сущностей. Когда перемещаются тела или действуют силы, они вызывают искривление пространства и времени, а структура пространства-времени, в свою очередь, сказывается на движении тел и действии сил. Пространство и время не только влияют на все, что случается во Вселенной, но и сами от всего этого зависят.

Представим себе бесстрашного астронавта, который остается на поверхности коллапсирующей звезды во время катастрофического сжатия. В некоторый момент по его часам, скажем в 11:00, звезда сожмется до критического радиуса, за которым гравитационное поле усиливается настолько, что из него невозможно вырваться. Теперь предположим, что по инструкции астронавт должен каждую секунду по своим часам посылать сигнал космическому кораблю, который находится на орбите на некотором фиксированном расстоянии от центра звезды. Он начинает передавать сигналы в 10:59:58, то есть за две секунды до 11:00. Что зарегистрирует экипаж на борту космического судна?

Ранее, проделав мысленный эксперимент с передачей световых сигналов внутри ракеты, мы убедились, что гравитация замедляет время и чем она сильнее, тем значительнее эффект. Астронавт на поверхности звезды находится в более сильном гравитационном поле, чем его коллеги на орбите, поэтому одна секунда по его часам продлится дольше секунды по часам корабля. Поскольку астронавт вместе с поверхностью движется к центру звезды, действующее на него поле становится все сильнее и сильнее, так что интервалы между его сигналами, принятыми на борту космического корабля, постоянно удлиняются. Это растяжение времени будет очень незначительным до 10:59:59, так что для астронавтов на орбите интервал между сигналами, переданными в 10:59:58 и в 10:59:59, очень ненамного превысит секунду. Но сигнала, отправленного в 11:00, на корабле уже не дождутся.

Все, что произойдет на поверхности звезды между 10:59:59 и 11:00 по часам астронавта, растянется по часам космического корабля на бесконечный период времени. С приближением к 11:00 интервалы между прибытием на орбиту последовательных гребней и впадин испущенных звездой световых волн станут все длиннее; то же случится и с промежутками времени между сигналами астронавта. Поскольку частота излучения определяется числом гребней (или впадин), приходящих за секунду, на космическом корабле будет регистрироваться все более и более низкая частота излучения звезды. Свет звезды станет все больше краснеть и одновременно меркнуть. В конце концов звезда настолько потускнеет, что сделается невидимой для наблюдателей на космическом корабле; все, что останется, – черная дыра в пространстве. Однако действие тяготения звезды на космический корабль сохранится, и он продолжит обращение по орбите.