Меню
Бесплатно
Главная  /  Фурункулы  /  Первичная и вторичная продукция. Продуктивность вторичная

Первичная и вторичная продукция. Продуктивность вторичная

Продуктивность экосистемы тесно связанна с потоком энергии, проходящим через нее. В каждой экосистеме только часть поступающей энергии накопляется в виде органических соединений. Скорость ассимиляции энергии называется продукцией, а величина продукции, отношение к единице площади экосистемы называется продуктивностью. Первичная продуктивность (Р) экосистемы определяется как скорость, с которой лучистая энергия усваивается продуцентами в процессе фото- и хемосинтеза накапливаясь в виде органических веществ, количество ее выражают в сырой или сухой фазе растений или энергетических единицах (ккал, Дж). Первичная продукция определяется общим потоком энергии через биотический компонент экосистем, а следовательно и биомасса живых организмов, которые могут существовать в биосистеме В создании первичной биологической продукции определяется возможностями фотосинтетического аппарата растений. Из общего количества лучевой энергии 44% составляет ФАР – фотосинтетически активная радиация т.е. свет по длине волны пригоден для фотосинтеза. Максимальная КПД фотосинтеза 10-12% ФАР, что является приблизительной половиной от теоретически возможного. По земному шару усвоение растениями солнечной энергии не превышает 0,1% из-за влияния на фотосинтез роста растений различных факторов: климатических, физических, химических.

В процессе производства органического вещества выделяют 4 последовательных уровня:

1 валовая первичная продуктивность – это общая продукция (В) фотосинтеза с учетом органических веществ, которые за время измерений были израсходованы на дыхание (Р).

2 чистая первичная продуктивность сообщества (Р чист) это - накапливание органического вещества в растительных тканях за вычетом органического вещества, которая израсходовалась на дыхание растений.

3 чистая продуктивность сообщества – это продукция накапливания органического вещества не потребленного гетеротрофами т.е. разность между чистой первичной продукцией и количеством органического вещества, потребленного гетеротрофами.

4 Вторичная продуктивность – накопление энергии на уровне консументов т.к. консументы используют ранее созданные питательные вещества часть из них расходуется на дыхание, а остальная часть на формирование тканей и органов (вторичную продукцию вычисляют отдельно для каждого проживающего уровня, т. к прирост массы для каждого из них происходит за счет энергии, поступающие предыдущем.

3.4. Гомеостаз и динамика экосистемы

Гомеостаз - способность биологических систем (организма, популяции и экосистем) противостоять изменениям и сохранять равновесие. Для управления экосистемами не требуется регуляция извне - это саморегулирующаяся система. Гомеостаз на экосистемном уровне обеспечен множеством управляющих механизмов, например, субсистема «хищник - жертва». Если рассматривать хищника и жертву как условно выделенные блоки - кибернитеческие системы, то управление между ними должно осуществляться посредством положительных и отрицательных связей. Положительная обратная связь «усиливает отклонение», например, увеличивает чрезмерно популяцию жертвы. Отрицательная обратная связь «уменьшает отклонение», например, ограничивает рост популяции жертвы за счет увеличения численности популяции хищников. Эта кибернетическая схема отлично иллюстрирует процесс коэволюции в системе «хищник-жертва», так как в этой «связке» развиваются и взаимные адаптационные процессы. Если в эту саморегулирующуюся систему не вмешиваются другие факторы (например, человек уничтожил хищника), то отрицательные и положительные связи будут сами уравновешиваться, в противном случае система погибнет. Иными словами, для существования экосистемы ее параметры не должны выходить за те пределы, когда уже невозможно восстановить равновесие между положительными и отрицательными связями.

Экологическое равновесие – это состояние экосистемы, при котором состав и продуктивность биотической части (растения, водоросли, бактерии, животные) в каждый конкретный момент времени наиболее полно соответствует абиотическим условиям (состав почвы, климат). Главной особенностью экологического равновесия является его подвижность.

Различают 2 типа подвижности равновесия:

    обратимые изменения;

    экологические сукцессии;

1.Обратимые изменения в экосистеме – это изменения экосистемы в течение года при колебаниях климата и изменения, связанные с ролью некоторых видов живых организмов в зависимости от ритма их жизненного цикла (смена времени года, зимняя спячка, перелёт птиц, растения в стадии семян). При этом видовой состав экосистемы сохраняется, она лишь подстраивается к колебаниям внешних и внутренних факторов.

Экологические сукцессии или закон сукцессионного замедления - это последовательная смена экосистем при постепенном изменении условий среды. При этом изменяется состав живых организмов, отдельные виды выбывают из экосистемы, а иные её пополняют, и соответственно изменяется продуктивность экосистемы. При резких изменениях условий среды (пожар, разлив нефти) – экологическое равновесие нарушается.

По мере того, как человечество с упрямством, достойным лучшего применения, превращает лицо Земли в сплошной антропогенный ландшафт, всё большее практическое значение приобретает оценка продуктивности различных экосистем. Человек научился получать энергию для своих производственных и бытовых нужд самыми различными способами, но энергию для собственного питания он может получать только через фотосинтез.

В пищевой цепи человека в основании почти всегда оказываются продуценты, преобразующие в энергию биомассы органического вещества. Ибо это как раз та энергия, которую впоследствии могут использовать консументы и, в частности, человек. Одновременно те же самые продуценты производят необходимый для дыхания кислород и поглощают углекислый газ, причём скорость газообмена продуцентов прямо пропорциональна их биопродуктивности. Следовательно, в обобщенном виде вопрос об эффективности экосистем формулируется просто: какую энергию может запасти растительность в виде биомассы органического вещества? На верхнем рис. 1 приведены значения удельной (на 1 м 2) продуктивности основных типов . Из этой диаграммы видно, что сельскохозяйственные угодья, создаваемые человеком, отнюдь не самые продуктивные экосистемы. Наивысшую удельную продуктивность дают болотистые экосистемы — влажные тропические джунгли, эстуарии и лиманы рек и обычные болота умеренных широт. На первый взгляд, они производят бесполезную для человека биомассу, но именно эти экосистемы очищают воздух и стабилизируют состав атмосферы, очищают воду и служат резервуарами для рек и почвенных вод и, наконец, являются местами размножения для огромного числа рыб и других обитателей вод, используемых в пищу человеком. Занимая 10 % площади суши, они создают 40 % производимой на суше биомассы. И это без каких-либо усилий со стороны человека! Именно поэтому уничтожение и «окультуривание» этих экосистем есть не только «убийство курицы, несушей золотые яйца», но и может оказаться самоубийством для человечества. Если обратиться к нижней диаграмме рис. 1, то можно видеть, что вклад пустынь и сухих степей в продуктивность биосферы ничтожен, хотя они уже занимают около четверти поверхности суши и благодаря антропогенному вмешательству имеют тенденцию к быстрому росту. В долгосрочной перспективе борьба с опустыниванием и эрозией почв, то есть превращение малопродуктивных экосистем в продуктивные, — вот разумный путь для антропогенных изменений в биосфере.

Удельная биопродуктивность открытого океана почти столь же низка, как у полупустынь, а его огромная суммарная продуктивность объясняется тем, что он занимает более 50 % поверхности Земли, вдвое превосходя всю площадь суши. Попытки использовать открытый океан в качестве серьёзного источника продуктов питания в ближайшее время вряд ли могут быть экономически оправданы именно в силу его низкой удельной продуктивности. Однако роль открытого океана в стабилизации условий жизни на Земле столь велика, что охрана его от загрязнения, особенно нефтепродуктами, совершенно необходима.

Рис. 1. Биопродуктивность экосистем как энергия, накопленная продуцентами в процессе фотосинтеза. Мировое производство электроэнергии составляет около 10 Экал/год, а всего человечество потребляет 50-100 Экал/год; 1 Экал (эксакалория) = 1 миллион миллиардов ккал = К) 18 кал

Нельзя недооценивать и вклад лесов умеренного пояса и тайги в жизнеспособность биосферы. Особенно существенна их относительная устойчивость к антропогенным воздействиям по сравнению с влажными тропическими джунглями.

Тот факт, что удельная продуктивность сельскохозяйственных угодий до сих пор в среднем намного ниже, чем у многих природных экосистем, показывает, что возможности роста производства продуктов питания на существующих площадях ещё далеко не исчерпаны. Пример — заливные рисовые плантации, в сущности — антропогенные болотные экосистемы, с их огромными урожаями, получаемыми при современной агротехнике.

Биологическая продуктивность экосистем

Скорость, с которой продуценты экосистемы фиксируют солнечную энергию в химических связях синтезируемого органического вещества, определяет продуктивность сообществ. Органическую массу, создаваемую растениями за единицу времени, называют первичной продукцией сообщества. Продукцию выражают количественно в сырой или сухой массе растений либо в энергетических единицах — эквивалентном числе джоулей.

Валовая первичная продукция — количество вещества, создаваемого растениями за единицу времени при данной скорости фотосинтеза. Часть этой продукции идет на поддержание жизнедеятельности самих растений (траты на дыхание).

Оставшаяся часть созданной органической массы характеризует чистую первичную продукцию , которая представляет собой величину прироста растений. Чистая первичная продукция — энергетический резерв для консументов и редуцентов. Перерабатываясь в цепях питания, она идет на пополнение массы гетеротрофных организмов. Прирост за единицу времени массы консументов - вторичная продукция сообщества. Вторичную продукцию вычисляют отдельно для каждого трофического уровня, так как прирост массы на каждом из них происходит за счет энергии, поступающей с предыдущего.

Гетеротрофы, включаясь в трофические цепи, живут за счет чистой первичной продукции сообщества. В разных экосистемах они расходуют ее с разной полнотой. Если скорость изъятия первичной продукции в цепях питания отстает от темпов прироста растений, то это ведет к постепенному увеличению обшей биомассы продуцентов. Под биомассой понимают суммарную массу организмов данной группы или всего сообщества в целом. Недостаточная утилизация продуктов опада в цепях разложения имеет следствием накопление в системе мертвого органического вещества, что происходит, например, при заторфовывании болот, зарастании мелководных водоемов, создании больших запасов подстилки в таежных лесах и т.д. Биомасса сообщества с уравновешенным круговоротом веществ остается относительно постоянной, так как практически вся первичная продукция тратится в цепях питания и разложения.

Экосистемы также различаются по относительной скорости создания и расходования как первичной, так и вторичной продукции на каждом трофическом уровне. Однако всем без исключения экосистемам свойственны определенные количественные соотношения первичной и вторичной продукции, получившие название правша пирамиды продукции : на каждом предыдущем трофическом уровне количество биомассы, создаваемой за единицу времени, больше, чем на последующем. Графически это правило обычно иллюстрируют в виде пирамид, суживающихся кверху и образованных поставленными друг на друга прямоугольниками равной высоты, длина которых соответствует масштабам продукции на соответствующих трофических уровнях.

Скорость создания органического вещества не определяет его суммарные запасы, т.е. общую биомассу всех организмов каждого трофического уровня. Наличная биомасса продуцентов или консументов в конкретных экосистемах зависит оттого, как соотносятся между собой темпы накопления органического вещества на определенном трофическом уровне и передачи его на вышестоящий.

Отношение годового прироста растительности к биомассе в наземных экосистемах сравнительно невелико. Даже в наиболее продуктивных дождевых тропических лесах эта величина не превышает 6,5%. В сообществах с преобладанием травянистых форм скорость воспроизводства биомассы гораздо выше. Отношение первичной продукции к биомассе растений определяет те масштабы потребления растительной массы, которые возможны в сообществе без изменения его продуктивности.

Для океана правило пирамиды биомасс не действует (пирамида имеет перевернутый вид).

Все три правила пирамид — продукции, биомассы и чисел — отражают, в конечном счете, энергетические отношения в экосистемах, и если два последних проявляются в сообществах с определенной трофической структурой, то первое (пирамида продукции) имеет универсальный характер. Пирамида чисел отражает численность отдельных организмов (рис. 2) или, например, численность населения по возрастным группам.

Рис. 2. Упрощенная пирамида численности отдельных организмов

Знание законов продуктивности экосистем и возможность количественного учета потока энергии имеют важное практическое значение. Первичная продукция агроценозов и эксплуатации человеком природных сообществ — основной источник запасов пищи для человечества.

Точные расчеты потока энергии и масштабов продуктивности экосистем позволяют регулировать в них круговорот веществ таким образом, чтобы добиваться наибольшего выхода выгодной для человека продукции. Кроме того, необходимо хорошо представлять допустимые пределы изъятия растительной и животной биомассы из природных систем, чтобы не подорвать их продуктивность. Подобные расчеты обычно очень сложны из-за методических трудностей.

Важнейшим практическим результатом энергетического подхода к изучению экосистем явилось осуществление исследований по Международной биологической программе, проводившихся учеными разных стран мира в течение ряда лет, начиная с 1969 г. в целях изучения потенциальной биологической продуктивности Земли.

Теоретическая возможная скорость создания первичной биологической продукции определяется возможностями фотосинтетического аппарата растений (ФАР). Максимально достигаемый в природе КПД фотосинтеза 10-12% энергии ФАР, что составляет около половины теоретически возможного. КПД фотосинтеза в 5% считается для фитоценоза очень высоким. В целом по земному шару усвоение растениями солнечной энергии не превышает 0,1%, так как активность фотосинтеза растений ограничивает множество факторов.

Мировое распределение первичной биологической продукции крайне неравномерно. Общая годовая продукция сухого органического вещества на Земле составляет 150-200 млрд т. Более трети его образуется в океанах, около двух третей — на суше. Почти вся чистая первичная продукция Земли служит для поддержания жизни всех гетеротрофных организмов. Энергия, недоиспользованная консу ментами, запасается в их организмах, органических осадках водоемов и гумусе почв.

На территории России в зонах достаточного увлажнения первичная продуктивность увеличивается с севера на юг, с увеличением притока тепла и продолжительности вегетационного сезона. Годовой прирост растительности изменяется от 20 ц/га на побережье и островах Северного Ледовитого океана до более чем 200 ц/га на Черноморском побережье Кавказа. В среднеазиатских пустынях продуктивность падает до 20 ц/га.

Для пяти континентов мира средняя продуктивность различается сравнительно мало. Исключением является Южная Америка, на большей части которой условия для развития растительности очень благоприятны.

Питание людей обеспечивают в основном сельскохозяйственные культуры, занимающие примерно 10% площади суши (около 1,4 млрд га). Общий годовой прирост культурных растений составляет около 16% всей продуктивности суши, большая часть которой приходится на леса. Примерно половина урожая идет непосредственно на питание людей, остальная часть — на корм домашним животным, используется в промышленности и теряется в отбросах.

Имеющиеся на Земле ресурсы, включая продукцию животноводства и результаты промысла на суше и в океане, могут обеспечить ежегодно менее 50% потребностей современного населения Земли.

Таким образом, большая часть населения Земли находится в состоянии хронического белкового голодания, а значительная часть людей страдает также и от общего недоедания.

Продуктивность биоценозов

Скорость фиксации солнечной энергии определяет продуктивность биоценозов. Основной показатель продукции — биомасса организмов (растительных и животных), составляющих биоценоз. Различают растительную биомассу — фитомассу, животную — зоомассу, бактериомассу и биомассу каких-либо конкретных групп или организмов отдельных видов.

Биомасса - органическое вещество организмов, выраженное в определенных количественных единицах и приходящееся на единицу площади или объема (например, г/м 2 , г/м 3 , кг/га, т/км 2 и др.).

Продуктивность — скорость прироста биомассы. Ее обычно относят к определенному периоду и площади, например к году и гектару.

Известно, что зеленые растения являются первым звеном в пищевых цепях и только они способны самостоятельно образовывать органическое вещество, используя энергию Солнца. Поэтому биомасса, произведенная автотрофными организмами, т.е. количество энергии, преобразованное растениями в органическое вещество на определенной площади, выраженное в определенных количественных единицах, называется первичной продукцией. Ее величина отражает продуктивность всех звеньев гетеротрофных организмов экосистемы.

Суммарная продукция фотосинтеза называется первичной валовой продукцией. Это вся химическая энергия в форме произведенного органического вещества. Часть энергии может идти на поддержание жизнедеятельности (дыхание) самих производителей продукции — растений. Если изъять ту часть энергии, которая тратится растениями на дыхание, то получится чистая первичная продукция. Ее можно легко учесть. Достаточно собрать, высушить и взвесить растительную массу, например, при уборке урожая. Таким образом, чистая первичная продукция равна разности между количеством атмосферного углерода, усвоенного растениями в процессе фотосинтеза и потребленного ими на дыхание.

Максимальная продуктивность характерна для тропических экваториальных лесов. Для такого леса 500 т сухого вещества на 1 га — не предел. Для Бразилии называют цифры в 1500 и даже 1700 т — это 150-170 кг растительной массы на 1 м 2 (сравните: в тундрах — 12 т, а в широколиственных лесах умеренной зоны — до 400 т на 1 га).

Плодородные наносы почвы, высокая сумма годичных температур, обилие влаги способствуют поддержанию очень высокой продуктивности фитоценозов в дельтах южных рек, в лагунах и эстуариях. Она достигает 20-25 т с 1 га в год в сухом веществе, что значительно превосходит первичную продуктивность еловых лесов (8-12 т). Сахарный тростник за год успевает накопить до 78 т фитомассы на 1 га. Даже сфагновое болото при благоприятных условиях обладает продуктивностью 8-10 т, что можно сравнить с продуктивностью елового леса.

«Рекордсмены» продуктивности на Земле — травяно-древесные заросли долинного типа, которые сохранились в дельтах Миссисипи, Параны, Ганга, вокруг озера Чад и в некоторых других регионах. Здесь за один год на 1 га образуется до 300 т органического вещества!

Вторичная продукция — это биомасса, созданная всеми консументами биоценоза за единицу времени. При ее подсчете производят вычисления отдельно для каждого трофического уровня, потому что при движении энергии от одного трофического уровня к другому она прирастает за счет поступления с предыдущего уровня. Общую продуктивность биоценоза нельзя оценить простой арифметической суммой первичной и вторичной продукции, потому что прирост вторичной продукции происходит не параллельно росту первичной, а за счет уничтожения какой-то ее части. Происходит как бы изъятие, вычитание вторичной продукции из общего количества первичной. Поэтому оценку продуктивности биоценоза производят по первичной продукции. Первичная продукция во много раз больше вторичной. В целом вторичная продуктивность колеблется от 1 до 10 %.

Законами экологии предопределены различия в биомассе растительноядных животных и первичных хищников. Так, за стадом мигрирующих оленей обычно следуют несколько хищников, например волков. Это позволяет волкам быть сытыми без ущерба для воспроизводства стада. Если бы численность волков приближалась к количеству оленей, то хищники быстро истребили бы стадо и остались без корма. По этой причине в умеренной зоне не бывает высокой концентрации хищных млекопитающих и птиц.

Продуктивность экосистем. Уровни продуктивности: первичная продуктивность (валовая и чистая), вторичная продуктивность, чистая продуктивность сообщества

Продуктивность экосистем

При анализе продуктивности и потоков вещества и энергии в экосистемах выделяют понятия биомасса и урожай на корню . Под урожаем на корню понимается масса тел всех организмов на единице площади суши или воды, а под биомассой - масса этих же организмов в пересчёте на энергию (например, в джоулях) или в пересчёте на сухое органическое вещество (например, в тоннах на гектар). К биомассе относят тела организмов целиком, включая и витализированные омертвевшие части и не только у растений, к примеру, кора и ксилема, но и ногти, и ороговевшие части у животных. Биомасса превращается в некромассу только тогда, когда отмирает часть организма (отделяется от него) или весь организм. Часто зафиксированные в биомассе вещества являются "мёртвым капиталом", особенно это выражено у растений: вещества ксилемы могут сотнями лет не поступать в круговорот, служа только опорой растения.

Под первичной продукцией сообщества (или первичной биологической продукцией) понимается образование биомассы (более точно - синтез пластических веществ) продуцентами без исключения энергии, затраченной на дыхание за единицу времени на единицу площади (например, в сутки на гектар). продуктивность экологический техногенный

Первичную продукцию сообщества разделяют на валовую первичную продукцию , то есть всю продукцию фотосинтеза без затрат на дыхание, и чистую первичную продукцию , являющуюся разницей между валовой первичной продукцией и затратами на дыхание. Иногда её ещё называют чистой ассимиляцией или наблюдаемым фотосинтезом.

Чистая продуктивность сообщества - скорость накопления органического вещества, не потребляемого гетеротрофами (а затем и редуцентами). Обычно вычисляется за вегетационный период либо за год. Таким образом, это часть продукции, которая не может быть переработана самой экосистемой. В более зрелых экосистемах значение чистой продуктивости сообщества стремится к нулю (концепция климаксных сообществ).

Вторичная продуктивность сообщества - скорость накопления энергии на уровне консументов. Вторичную продукцию не подразделяют на валовую и чистую, так как консументы только потребляют энергию, усвоенную продуцентами, часть её не ассимилируется, часть идёт на дыхание, а остаток идёт в биомассу, поэтому более корректно называть её вторичной ассимиляцией.

Распределение энергии и вещества в экосистеме может быть представлено в виде системы уравнений. Если продукцию продуцентов представить как P1, то продукция консументов первого порядка будет выглядеть следующим образом:

где R2 - затраты на дыхание, теплоотдача и неассимилированная энергия. Следующие консументы (второго порядка) переработают биомассу консументов первого порядка в соответствии с:

и так далее, до консументов самого высшего порядка и редуцентов. Таким образом, чем больше в экосистеме потребителей (консументов), тем более полно перерабатывается энергия, первоначально зафиксированная продуцентами в пластических веществах. В климаксных сообществах, где разнообразие для данного региона обычно максимально, такая схема переработки энергии позволяет сообществам устойчиво функционировать на протяжении длительного времени.

Биологическая продуктивность экосистем - основа жизни биосферы и человека как ее части. Она зависит от ресурсов почвы (ее обеспеченности питательными элементами и влагой), атмосферы, солнечного света и тепла. Каждый из этих факторов (ресурсов или условий) незаменим: при отсутствии света или диоксида углерода в атмосфере нельзя повысить продуктивность экосистемы высокими дозами удобрений или обильным поливом. При низкой температуре в равной мере будут бесполезны как полив, так и удобрение.

Самое важное при использовании биологической продукции естественных экосистем - сохранить ее за счет рационального использования.

Чтобы оценить значение того или иного вида для круговорота веществ в данном биогеоценозе необходимо знать не только его биомассу, но и относительную скорость ее создания, т.е.биологическую продуктивность .

Таким образом,

Биологическая продуктивность - это скорость создания определенного количества биомассы растений, животных и микроорганизмов, входящих в состав биогеоценоза.

Биологическая продуктивность определяется количеством биомассы, синтезируемой за единицу времени на единицу площади (или объема) и выражается чаще всего в граммах углерода или сухого органического вещества или в энергетических единицах – эквивалентном числе калорий или джоулей.

Биологическую продуктивность можно выразить продукцией за сезон, за год, за несколько лет или за любую другую единицу времени.

Для наземных и донных организмов биологическая продуктивность определяется количеством биомассы на единицу площади, а для планктонных и почвенных - на единицу объема.

Ключевое слово в понятии продуктивность – скорость. Однако вместо термина «продуктивность» часто используется термин «продукция», но при этом все равно учитывается фактор времени.

Биологическую продуктивность нельзя смешивать с биомассой.

Биомасса - это выраженное в единицах массы (веса) или энергии количество живого вещества тех или иных организмов, обитающих на исследуемой площади или в исследуемом объеме.

Например:

    планктонные водоросли за год на единицу площади синтезируют столько же органического вещества, сколько и высокопродуктивные леса, однако биомасса последних в сотни тысяч раз больше;

    популяции мелких млекопитающих по сравнению с крупными обладают большей скоростью роста и размножения и поэтому имеют более высокую продуктивность при равной биомассе.

Различают первичную и вторичную продуктивность экосистем.

Первичная продуктивность экосистем - это скорость, с которой автотрофные организмы (продуценты) в процессе фотосинтеза связывают солнечную энергию и запасают ее в форме химических связей органических веществ, т.е. скорость образования биомассы органического вещества автотрофами (продуцентами).

Первичная продуктивность подразделяется на валовую и чистую продуктивность.

Валовая первичная продуктивность – это скорость накопления органического вещества продуцентами, включая затраты на дыхание (т.е. включая ту его часть, которая будет израсходована в процессах жизнедеятельности растений).

Так, например, в тропических лесах и зрелых лесах умеренной зоны затраты на дыхание составляют 40-70%, а у планктонных водорослей и у большинства сельскохозяйственных культур – 40%.

Чистая первичная продуктивность – это скорость накопления органического вещества в растительных тканях за вычетом той его части, которая использовалась на дыхание растений.

Поэтому чистая первичная продукция, накопленная в виде биомассы растений всегда меньше валовой первичной продукции, созданной ими в процессе фотосинтеза.

Чистая первичная продуктивность автотрофных организмов (продуцентов) может служить источником питания для гетеротрофных организмов, которые на ее основе образуют свою биомассу.

Вторичная продуктивность - это скорость образования биомассы гетеротрофными организмами (консументами).

Вторичная продуктивность уже не делится на валовую и чистую продуктивность, так как гетеротрофы увеличивают свою массу за счет первичной ранее созданной продукции.

Вторичную продуктивность рассчитывают отдельно для каждого трофического уровня, так как прирост биомассы на каждом из них происходит за счет энергии, поступающей с предыдущего уровня.

При этом необходимо учитывать, что при переходе с одного трофического уровня консументов на другой значительная часть энергии расходуется в процессах жизнедеятельности, поэтому вторичная продукция каждого последующего трофического уровня будет меньше продукции предыдущего.

Если в экосистеме скорость образования чистой первичной продукции выше темпов переработки ее консументами, то это ведет к увеличению биомассы продуцентов.

Если при этом присутствует недостаточная утилизация продуктов опада в цепях разложения редуцентами, то происходит накопление мертвого органического вещества (в форме каменного угля, горючих сланцев, сухих листьев и т.д.).

В стабильных экосистемах биомасса остается постоянной, так как практически вся созданная продукция расходуется в цепях питания разнообразными консументами и редуцентами, т.е. природа стремится использовать полностью валовую продукцию.

Однако равенство между приходом и расходом продукции – явление достаточно редкое и наблюдается в наиболее стабильных сообществах, например, в тропической зоне. Однако это создает объективные трудности для развития там сельского хозяйства.

Человек, выжигая пышный тропический лес надеется получить на освободившейся территории высокие урожаи. Однако вскоре оказывается, что почвы на этой территории абсолютно бесплодны – вся годовая продукция росшего на этом месте леса потреблялась различными консументами и редуцентами и в почвах ничего не откладывалось.

Кроме первичной и вторичной продукции биогеоценозов, различают промежуточную и конечную продукцию.

Промежуточная продукция - это продукция, которая после потребления членами биогеоценоза снова возвращается в круговорот веществ этой системы.

Конечная продукция - это продукция, которая выводится за пределы данной экосистемы.

Например, продукция, получаемая человеком в процессе возделывания сельскохозяйственных культур, разведения домашних животных, охоты, промысла и т.д.

Продуктивность различных экосистем неодинакова и зависит от ряда экологических факторов, в первую очередь, климатических (тепло, влага и др).

При этом первичная продукция органического вещества в экосистемах, богатых жизнью, может превосходить продукцию сравнительно бедных экосистем более, чем в 50 раз.

Наиболее продуктивны экосистемы эстуариев и коралловых рифов (средняя продуктивность достигает 20 г / м 2 в сутки), влажных тропических лесов и болот (средняя продуктивность составляет 10 г / м 2 в сутки).

Высокопродуктивные экосистемы встречаются там, где климатические условия благоприятны, особенно при дополнительном поступлении в экосистему энергии извне.

Поступление энергии со стороны абиотических компонентов уменьшает затраты живых организмов на поддержание собственной жизнедеятельности, т.е. они компенсируют свои затраты на дыхание.

Например, энергия приливов повышает продуктивность природной прибрежной экосистемы, компенсируя потери энергии при дыхании.

Низкой продуктивностью (0,1-0,5 г / м 2 в сутки) характеризуются экосистемы пустынь и тундр, в которых дефицит влаги и тепла лимитирует развитие низшего трофического уровня, а также открытые воды морей и океанов, где при избытке воды объем органических веществ сравнительно невысок.

При этом необходимо отметить, что большая часть земного шара покрыта океанами и пустынями с низкой продуктивностью, тогда как высокая продуктивность характерна для сравнительно незначительных участков Земли (эстуарии, коралловые рифы, болота, влажные леса).

Изменение первичной продуктивности экосистем по направлению с севера на юг происходит в следующем порядке:

    в наземных арктических биогеоценозах продуктивность низкая, а арктические моря, так же как и антарктические являются высокопродуктивными;

    в тропиках огромная часть суши занята малопродуктивными пустынями, бедны и моря этой зоны;

    в экваториальной зоне располагаются самые высокопродуктивные биогеоценозы коралловых рифов, эстуариев, болот и особенно влажных тропических лесов.

По мере продвижения с севера на юг увеличивается удельное количество солнечной энергии, попадающей на единицу поверхности Земли, что приводит к большему количеству видов, накоплению более значительной биомассы и повышению продуктивности экосистем суши.

В морских экосистемах иная ситуация, чем на суше.

Высока продуктивность северных морей, а также морей крайних южных широт, где из глубин поступают холодные воды, богатые кислородом и биогенами. В теплой воде кислород растворяется хуже и мало биогенов (тропики богаты видами, но сравнительно мало продуктивны).

Общая чистая первичная продуктивность на Земле составляет 170 млрд. тонн в год, из которых 115 млрд. тонн дают экосистемы суши, а 55 млрд. тонн - экосистемы морей.

Вторичная продукция (биомасса гетеротрофных организмов, прежде всего животных - зоомасса), во много раз меньше первичной продукции (биомассы растений - фитомассы).

В разных экосистемах зоомасса составляет незначительную долю биомассы (от 0,05% до 5% всей биомассы), тем не менее животные суши играют большую роль в регулировании процессов, происходящих в отдельных экосистемах и биосфере в целом.

Совершенно очевидно, что жизнь людей, их производственная деятельность зависят от продуктивности основных биогеоценозов, от первичной продукции и ее мирового распределения.

Питание людей обеспечивается главным образом сельскохозяйственными культурами, занимающими около 10% площади суши и дающие примерно 9,1 млрд. тонн органического вещества в год, что составляет значительную часть мировых ресурсов.

Кроме того, огромная масса первичной продукции используется человеком как техническое сырье в промышленности и быту (топливо, хлопок, лен, эфиромасличные культуры и др.), причем около 50% теряется в отходах.

Но человек потребляет не только первичную продукцию. Он изымает из биосферы большое количество вторичной продукции в виде животной пищи, расходы которой подсчитать очень трудно.

Таким образом, имеющиеся представления о продуктивности экосистем и мировом распределении первичной продукции дают возможность ориентироваться в обстановке, сложившейся на нашей планете и на строго научной основе разрабатывать мероприятия по рациональному использованию природных ресурсов.

Читайте также:
  1. A) создающие условия для жизни других видов данного биоценоза
  2. Агроэкосистемы, их отличия от природных экосистем. Последствия деятельности человека в экосистемах. Сохранение экосистем.
  3. Биологическая продуктивность и устойчивость экосистем.
  4. В каком случае проводится первичная аттестация в области промышленной безопасности?
  5. Вопрос 24. Продукция предприятия: понятие, виды, классификация.
  6. ВОПРОС 6: Первичная обработка почвы на различных типах лугов.
  7. Вопрос № 27 Топография межреберных промежутков. Первичная хирургическая обработка проникающих ран грудной стенки.
  8. Д) стремились повышать продуктивность и товарность своего хозяйства.

Продуктивность экосистем тесно связана с потоком энергии, проходящим через ту или иную экосистему. В каждой экосистеме часть приходящей энергии, попадающей в трофическую сеть, накапливается в виде органических соединений. Безостановоч­ное производство биомассы (живой материи) – один из фундаментальных процессов биосферы. Органическое вещество, со­здаваемое продуцентами в процессе фотосинтеза или хемосинте­за, называют первичной продукцией экосистем ы (сообщества). Количественно ее выражают в сырой или сухой массе растений или в энергетических единицах – эквивалентном числе калорий или джоулей. Первичной продукцией определяется общий поток энер­гии через биотический компонент экосистемы, а следовательно, и биомасса живых организмов, которые могут существовать в эко­системе.

Теоретически возможная скорость создания первичной био­логической продукции определяется возможностями фотосин­тетического аппарата растений. А как известно, лишь часть энер­гии света, получаемой зеленой поверхностью, может быть ис­пользована растениями. Из коротковолнового излучения Солнца только 44% относится к фотосинтетически активной радиации (ФАР) - свет по длине волны, пригодный для фотосинтеза. В целом по земному шару усвоение растениями солнечной энергии не превышает 0,1% из-за ограничении фотосинтетической активности растений множеством факторов, таких, как недостаток тепла и влаги, неблагоприятные физические и химические свойства почвы и т. д. Скорость, с которой растения накапливают химическую энергию, называют валовой первичной продуктивностью (ВПП). Около 20% этой энергии расходуется растениями на дыхание и фотодыхание. Скорость накопления органического вещества за вычетом этого расхода называется чистой первичной продуктивностью (ЧПП). Это энергия, которую могут использовать организмы следующих трофических уровней. Количество органического вещества, накопленного гетеротрофными организмами, называется вторичной продукцией . Вторичную продукцию вычисляют отдельно для каждого трофического уровня, так как прирост массы на каждом из них происходит за счет энергии, поступающей с предыдущего. Гетеротрофы, включаясь в трофические цепи, в конечном итоге живут за счет чистой первичной продукции сообщества. Полнота ее расхода в разных экосистемах различна. Постепенное увеличение общей биомассы продуцентов отмечается, если скорость изъятия первичной продукции в цепях питания отстает от темпов прироста растений.



Мировое распределение первичной биологической продукции весьма неравномерно. Чистая продукция меняется от 3000 г/м ² /год до нуля в экстрааридных пустынях, лишенных pacтений, или в условиях Антарктиды с ее вечными льдами на поверхности суши, а запас биомассы – соответственно от 60 кг/м 2 до нуля. Р. Уиттекер (1980) делит по продуктивности все сообщества на четыре класса:

1. Сообщества высшей продуктивности, 3000-2000 г/м2/год. Сюда относятся тропические леса, посевы риса и сахарного тро­стника.

2. Сообщества высокой продуктивности, 2000-1000 г/м2/ год. В этот класс включены листопадные леса умеренной поло­сы, луга при применении удобрений, посевы кукурузы. Макси­мальная биомасса приближается к биомассе первого класса. Ми­нимальная биомасса соответственно равна чистой биологичес­кой продукции однолетних культур.

3. Сообщества умеренной продуктивности, 1000-250 г/м2/ год. К этому классу относятся посевы основной массы возде­лываемых сельскохозяйственных культур, степи.



4. Сообщества низкой продуктивности, ниже 250 г/м ² /год - пустыни, полупустыни (в отечественной литературе их называ­ют чаще опустыненными степями), тундры.

Общая годовая продуктивность сухого органического веще­ства на Земле составляет 150-200 млрд. тонн. Две трети его об­разуется на суше, третья часть – в океане.

Практически вся чистая первичная продукция Землислужит для поддержки жизни всех гетеротрофных организмов. Энергия, недоиспользованная консументами, запасается в их телах, гумусе почв и органических осадках водоемов.